Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Journal of infection and public health ; 2023.
Article in English | EuropePMC | ID: covidwho-2287706

ABSTRACT

Background Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. Methods A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 16 S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. Results No significant (p>0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p<0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7%) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. Conclusions Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.

2.
J Infect Public Health ; 16(5): 680-688, 2023 May.
Article in English | MEDLINE | ID: covidwho-2287707

ABSTRACT

BACKGROUND: Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS: A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS: No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS: Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.


Subject(s)
COVID-19 , Coinfection , Microbiota , Respiratory Tract Infections , Humans , Saudi Arabia/epidemiology , SARS-CoV-2 , Nasopharynx , Klebsiella pneumoniae , Obesity , Respiratory Tract Infections/epidemiology
3.
Int J Infect Dis ; 131: 87-94, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2250705

ABSTRACT

OBJECTIVES: The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS: We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS: As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 'S'-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION: MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Camelus , Phylogeny , Middle East/epidemiology , Saudi Arabia/epidemiology , Genomics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary
4.
J Med Virol ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2229856

ABSTRACT

Due to the adverse effects of obesity on host immunity, this study investigated the effectiveness of COVID-19 vaccines (BNT162b2, ChAdOx-nCov-2019, and mRNA-1273) in inducing anti-SARS-CoV-2 Spike (S) neutralizing antibodies among individuals with various obesity classes (class I, II, III, and super obesity). Sera from vaccinated obese individuals (n = 73) and normal BMI controls (n = 46) were subjected to S-based enzyme-linked immunosorbent assay (ELISA) and serum-neutralization test (SNT) to determine the prevalence and titer of anti-SARS-CoV-2 neutralizing antibodies. Nucleocapsid-ELISA was also utilized to distinguish between immunity acquired via vaccination only versus vaccination plus recovery from infection. Data were linked to participant demographics including age, gender, past COVID-19 diagnosis, and COVID-19 vaccination profile. S-based ELISA demonstrated high seroprevalence rates (>97%) in the study and control groups whether samples with evidence of past infection were included or excluded. Interestingly, however, SNT demonstrated a slightly significant reduction in both the rate and titer of anti-SARS-CoV-2 neutralizing antibodies among vaccinated obese individuals (60/73; 82.19%) compared to controls (45/46; 97.83%). The observed reduction in COVID-19 vaccine-induced neutralizing humoral immunity among obese individuals occurs independently of gender, recovery from past infection, and period from last vaccination. Our data suggest that COVID-19 vaccines are highly effective in inducing protective humoral immunity. This effectiveness, however, is potentially reduced among obese individuals which highlight the importance of booster doses to improve their neutralizing immunity. Further investigations on larger sample size remain necessary to comprehensively conclude about the effect of obesity on COVID-19 vaccine effectiveness on humoral immunity induction.

5.
Vaccines (Basel) ; 11(2)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225804

ABSTRACT

Iron is a crucial micronutrient for immunity induction in response to infections and vaccinations. This study aimed to investigate the effect of iron deficiency on COVID-19-vaccine-induced humoral immunity. We investigated the effectiveness of COVID-19 vaccines (BNT162b2, mRNA-1273, and ChAdOx nCov-2019) in iron-deficient individuals (n = 63) and provide a side-by-side comparison to healthy controls (n = 67). The presence of anti-SARS-CoV-2 spike (S) and anti-nucleocapsid (NP) IgG were assessed using in-house S- and NP-based ELISA followed by serum neutralization test (SNT). High concordance between S-based ELISA and SNT results was observed. The prevalence of neutralizing antibodies was 95.24% (60/63) in the study group and 95.52% (64/67) in the controls with no significant difference. The presence/absence of past infection, period since vaccination, vaccine type, and being iron-deficient or having iron-deficiency anemia did not exert any significant effect on the prevalence or titer of anti-SARS-CoV-2 neutralizing antibodies. NP-based ELISA identified individuals unaware of exposure to SARS-CoV-2. Moreover, absence of anti-NP IgG was noted in participants who were previously diagnosed with COVID-19 suggesting the unpredictability of after-infection immunity. To sum up, this study demonstrated an initial lack of evidence on the association between iron deficiency and the effectiveness of COVID-19-vaccine-induced neutralizing humoral immunity. Similar studies with larger sample size remain necessary to obtain comprehensive conclusions about the effect or lack of effect of iron on COVID-19-vaccine effectiveness.

7.
Diagnostics (Basel) ; 13(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2166319

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a serious pathogen affecting both human and camel health globally, with camels being known carriers of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and analyzed by multiple sequence alignment to design and predict siRNAs with online software. The siRNAs were designed from the orf1ab region of the virus genome because of its high sequence conservation and vital role in virus replication. The designed siRNAs were used for experimental evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed according to the cycle threshold value during a quantitative real-time polymerase chain reaction. Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest efficacy displayed in the Vero cells.

8.
Curr Opin Pulm Med ; 28(3): 192-198, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-2077951

ABSTRACT

PURPOSE OF REVIEW: Mass gathering (MG) religious events provide ideal conditions for transmission and globalization of respiratory tract infections (RTIs). We review recent literature on COVID-19 and other RTIs at recurring international annual MG religious and sporting events. RECENT FINDINGS: Due to the COVID-19 pandemic organizers of MG religious and sporting events introduced risk-based infection control measures that limited transmission of RTIs. The 2020 and 2021 Hajj were conducted with limited numbers of pilgrims compared to the annual millions of pilgrims. The Tokyo 2020 Olympic and Paralympic Games were cancelled and held in 2021. The success of the COVID-19 countermeasures at the 2021 Hajj and 2021 Tokyo Olympics was based on implementing good public health and social measures alongside a comprehensive testing strategy. SUMMARY: MG events are associated with transmission of a range of bacterial and viral RTIs. Introducing risk based a multitude of public health interventions can reduce transmission of SARS-CoV-2 and other RTIs.


Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Islam , Mass Gatherings , Pandemics/prevention & control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2 , Travel
10.
PLoS Pathog ; 18(9): e1010782, 2022 09.
Article in English | MEDLINE | ID: covidwho-2039444

ABSTRACT

Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice. Lohmann hens were injected with recombinant SARS-CoV-2 RBD protein; IgY-Abs were extracted from the eggs and characterized using SDS-PAGE. Antiviral activity was evaluated using plaque reduction neutralization tests. In additional experiments, IgY-RBD efficacy was examined in mice sensitized to SARS-CoV-2 infection by transduction with Ad5-hACE2 (mild disease) or by using mouse-adapted virus (severe disease). In both cases, prophylactic intranasal administration of IgY-Abs reduced SARS-CoV-2 replication, and reduced morbidity, inflammatory cell infiltration, hemorrhage, and edema in the lungs and increased survival compared to control groups that received non-specific IgY-Abs. These results indicate that further evaluation of IgY-RBD antibodies in humans is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Antiviral Agents , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Mice
11.
J Infect Public Health ; 15(6): 685-688, 2022 May 13.
Article in English | MEDLINE | ID: covidwho-1945692

ABSTRACT

BACKGROUND: Rheumatic diseases patients receiving Rituximab had severe COVID-19 disease. Although they had impaired humoral immune responses following COVID-19 vaccine, they had preserved cellular immune responses. Waning of COVID-19 antibody responses was observed within six months post vaccination among immunocompromised patients. Recent reports showed fatal outcome of breakthrough SARS-CoV-2 infections among vaccinated high-risk rheumatic diseases patients receiving Rituximab. SAR-CoV-2 serological tests were not performed. OBJECTIVE: Evaluation of COVID-19 vaccine humoral responses and breakthrough infections among low risk fully vaccinated rheumatic patients during the Delta Variant Era. METHODS: A case series of 19 fully vaccinated patients with rheumatic diseases were followed to determine post vaccine SARS-CoV-2 neutralizing antibody titers and to monitor the development of breakthrough infections up to eight months post vaccine at our tertiary care center in Jeddah, Saudi Arabia from 1st April until 30th November 2021. RESULTS: The mean age of patients was 49 years old. 10% of patients were receiving Rituximab. 73% of patients had positive SARS-CoV-2 serological testing post second vaccine. Two mild breakthrough COVID-19 infections were diagnosed six months post second dose of vaccine. Patients were less than 65 years, did not receive Rituximab, did not have interstitial lung diseases and had positive post vaccine serological testing. CONCLUSIONS: We demonstrated high SARS-CoV-2 neutralizing antibodies seroprevalence and self-limiting breakthrough infections in low risk rheumatic diseases patients during the Delta Era. Future studies are needed to study the outcome of rheumatic diseases patients in the Era of Omicron in view of viral immune escape responses.

12.
Diagnostics (Basel) ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1887179

ABSTRACT

Background: The global pandemic coronavirus SARS-CoV-2 has a healthcare, social and economic burden. To limit the spread of the virus, the World Health Organization (WHO) urgently called for extensive screening of suspected individuals; thus, a quick, simple, and sensitive diagnostic assay is always in need. Methods: We applied reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for the detection of SARS-CoV-2. The RT-LAMP method was optimized by evaluating two fluorescence amplification mixes and several reaction times, and results were compared to the standard real-time RT-PCR (rtRT-PCR). The assay was validated using 200 nasopharyngeal swabs collected in viral transport media (62 positive for SARS-CoV-2, and 138 negative for SARS-CoV-2 detected by the rtRT-PCR method). The samples were diluted 1:4 in diethylpyrocarbonate (DEPC)-treated water, utilized for RT-LAMP using different singleplex and multiplex sets of LAMP primers (N gene, S gene, and orf1ab gene), and incubated at 65 °C using real-time PCR 7500. Results: Our direct detection with the RT-LAMP protocol showed 100% concordance (sensitivity and specificity) with the standard protocol used for the detection of SARS-CoV-2 nucleic acid. Conclusions: In this study, we set up a rapid, simple, and sensitive RT-LAMP assay for the detection of SARS-CoV-2 in clinical samples. The assay is suitable for point of care detection in public hospitals, medical centers in rural areas, and in transportation hubs.

13.
J Infect Public Health ; 15(6): 628-630, 2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1873160

ABSTRACT

In the era of SARS-CoV-2 variants and COVID-19 vaccination, the duration of infectious viral shedding and isolation in post vaccine breakthrough infections is challenging and depends on disease severity. The current study described a case of SARS-CoV-2 Delta variant pneumonia requiring hospitalization. The patient received two doses of BNT162b2 COVID-19 vaccines, and he had positive SARS-CoV-2 viral cultures 12 days post symptom onset. The time between the second dose of vaccine and the breakthrough infection was 6 months. While immunosuppression is a known risk factor for prolonged infectious viral shedding, age and time between vaccination and breakthrough infection are important risk factors that warrant further studies.

14.
Saudi Pharm J ; 30(7): 979-1002, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867429

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a more severe strain of coronavirus (CoV) that was first emerged in China in 2019. Available antiviral drugs could be repurposed and natural compounds with antiviral activity could be safer and cheaper source of medicine for SARS-CoV-2. 78 natural antiviral compounds database was identified from literature and virtual screening technique was applied to identify potential 3-chymotrypsin-like protease (3CLpro) inhibitors. Molecular docking studies were conducted to analyze the main protease (3CLpro) and inhibitors interactions with key residues of active site of target protein (PDB ID: 6LU7), active site constitute the part of active domain I and II of 3CLpro. 10 compounds with highest dock score were subjected to calculate ADMET parameters to figure out drug-likeness. Molecular dynamic (MD) simulation of the selected lead was performed by Amber simulation package to understand the conformational changes in docked complex. MD simulations analysis (RMSD, RMSF, Rg, BF, HBs, and SASA plots) of lead bounded with 3CLpro, hence revealed the important structural turns and twists during MD simulations from 0 to 100 ns. MM-PBSA/GBSA methods has also been applied for the estimation binding free energy (BFE) of the selected lead-complex. The present study has identified lead compound "Forsythoside A" an active extract of Forsythia suspense as SARS-CoV-2 3CLpro inhibitor that can block the viral replication and translation. Structural analysis of target protein and lead compound performed in this study could contribute to the development of potential drug against SARS-CoV-2 infection.

15.
Sci Rep ; 12(1): 7005, 2022 04 29.
Article in English | MEDLINE | ID: covidwho-1830097

ABSTRACT

Camels gained attention since the discovery of MERS-CoV as intermediary hosts for potentially epidemic zoonotic viruses. DcHEV is a novel zoonotic pathogen associated with camel contact. This study aimed to genetically characterize DcHEV in domestic and imported camels in Saudi Arabia. DcHEV was detected by RT-PCR in serum samples, PCR-positive samples were subjected to sequencing and phylogenetic analyses. DcHEV was detected in 1.77% of samples with higher positivity in domestic DCs. All positive imported dromedaries were from Sudan with age declining prevalence. Domestic DcHEV sequences clustered with sequences from Kenya, Somalia, and UAE while imported sequences clustered with one DcHEV isolate from UAE and both sequences clustered away from isolates reported from Pakistan. Full-genome sequences showed 24 amino acid difference with reference sequences. Our results confirm the detection of DcHEV in domestic and imported DCs. Further investigations are needed in human and camel populations to identify DcHEV potential zoonosis threat.


Subject(s)
Coronavirus Infections , Hepatitis E virus , Animals , Camelus , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genetic Variation , Hepatitis E virus/genetics , Phylogeny , Saudi Arabia/epidemiology
16.
Comput Biol Chem ; 98: 107645, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1693749

ABSTRACT

In this paper, a compartmental mathematical model has been utilized to gain a better insight about the future dynamics of COVID-19. The total human population is divided into eight various compartments including susceptible, exposed, pre-asymptomatic, asymptomatic, symptomatic, quarantined, hospitalized and recovered or removed individuals. The problem was modeled in terms of highly nonlinear coupled system of classical order ordinary differential equations (ODEs) which was further generalized with the Atangana-Balaeanu (ABC) fractional derivative in Caputo sense with nonlocal kernel. Furthermore, some theoretical analyses have been done such as boundedness, positivity, existence and uniqueness of the considered. Disease-free and endemic equilibrium points were also assessed. The basic reproduction was calculated through next generation technique. Due to high risk of infection, in the present study, we have considered the reported cases from three continents namely Americas, Europe, and south-east Asia. The reported cases were considered between 1st May 2021 and 31st July 2021 and on the basis of this data, the spread of infection is predicted for the next 200 days. The graphical solution of the considered nonlinear fractional model was obtained via numerical scheme by implementing the MATLAB software. Based on the fitted values of parameters, the basic reproduction number ℜ0 for the case of America, Asia and Europe were calculated as ℜ0≈2.92819, ℜ0≈2.87970 and ℜ0≈2.23507 respectively. It is also observed that the spread of infection in America is comparatively high followed by Asia and Europe. Moreover, the effect of fractional parameter is shown on the dynamics of spread of infection among different classes. Additionally, the effect of quarantined and treatment of infected individuals is also shown graphically. From the present analysis it is observed that awareness of being quarantine and proper treatment can reduce the infection rate dramatically and a minimal variation in quarantine and treatment rates of infected individuals can lead us to decrease the rate of infection.


Subject(s)
COVID-19 , Quarantine , Asia , Basic Reproduction Number , COVID-19/epidemiology , Hospitalization , Humans
17.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1542704

ABSTRACT

Without effective antivirals, the COVID-19 pandemic will likely continue to substantially affect public health. Medicinal plants and phytochemicals are attractive therapeutic options, particularly those targeting viral proteins essential for replication cycle. Herein, a total 179 phytochemicals of licorice (Glycyrrhiza glabra) were screened and scrutinized against the SARS-CoV-2 main protease (Mpro) with considerable binding affinities in the range of -9.831 to -2.710 kcal/mol. The top 10 compounds with the best docking scores, licuraside, glucoliquiritin apioside, 7,3'-Dihydroxy-5'-methoxyisoflavone, licuroside, kanzonol R, neoisoliquiritin, licochalcone-A, formononetin, isomucronulatol, and licoricone, were redocked using AutoDock Vina, yielding -8.7 to -7.3 kcal/mol binding energy against Glycyrrhizin (-8.0 kcal/mol) as a reference ligand. Four compounds, licuraside, glucoliquiritin apioside, 7,3'-Dihydroxy-5'-methoxyisoflavone, and licuroside, with glycyrrhizin (reference ligand) were considered for the 100 ns MD simulation and post-simulation analysis which support the stability of docked bioactive compounds with viral protein. In vitro studies demonstrated robust anti-SARS-CoV-2 activity of licorice and glycyrrhizin under different treatment protocols (simulations treatment with viral infection, post-infection treatment, and pre-treatment), suggesting multiple mechanisms for action. Although both compounds inhibited SARS-CoV-2 replication, the half-maximal inhibitory concentration (IC50) of glycyrrhizin was substantially lower than licorice. This study supports proceeding with in vivo experimentation and clinical trials and highlights licorice and glycyrrhizin as potential therapeutics for COVID-19.

18.
Saudi Med J ; 42(7): 742-749, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1513260

ABSTRACT

OBJECTIVES: To identify the prevalence of COVID-19 antibodies among operating room and critical care staff. METHODS: In this cross-sectional study, we recruited 319 Healthcare workers employed in the operation theater and intensive care unit of King Abdulaziz University Hospital (KAUH), a tertiary teaching hospital in Jeddah, Saudi Arabia between August 9, 2020 and November 2, 2020. All participants completed a 20-item questionnaire on demographic data and COVID-19 risk factors and provided blood samples. Antibody testing was performed using an in-house enzyme immunoassay and microneutralization test. RESULTS: Of the 319 participants, 39 had detectable COVID-19 antibodies. Five of them had never experienced any symptoms suggestive of COVID-19, and only 19 were previously diagnosed with COVID-19. The odds of developing COVID-19 or having corresponding antibodies increased if participants experienced COVID-19 symptoms (odds ratio [OR], 3.1; 95% confidence interval [CI], 1.2-7.5) or reported contact with an infected family member (OR, 5.3; 95% CI, 2.5-11.2). Disease acquisition was not associated with employment in the ICU and involvement in the intubation of or close contact with COVID-19 patients. Of the 19 previously diagnosed participants, 6 did not possess any detectable COVID-19 antibodies. CONCLUSIONS: Healthcare workers may have undiagnosed COVID-19, and those previously infected may not have long-lasting immunity. Therefore, hospitals must continue to uphold strict infection control during the COVID-19 pandemic.


Subject(s)
COVID-19 Serological Testing/statistics & numerical data , COVID-19/diagnosis , Health Personnel , SARS-CoV-2/isolation & purification , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , Critical Care , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Hospitals, Teaching , Humans , Infectious Disease Transmission, Patient-to-Professional , Male , Middle Aged , Operating Rooms , Pandemics , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Saudi Arabia/epidemiology
19.
Int J Infect Dis ; 108: 112-115, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1351691

ABSTRACT

BACKGROUND: Immunocompromised patients with coronavirus disease 2019 (COVID-19) have prolonged infectious viral shedding for more than 20 days. A test-based approach is suggested for de-isolation of these patients. METHODS: The strategy was evaluated by comparing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load (cycle threshold (Ct) values) and viral culture at the time of hospital discharge in a series of 13 COVID-19 patients: six immunocompetent and seven immunocompromised (five solid organ transplant patients, one lymphoma patient, and one hepatocellular carcinoma patient). RESULTS: Three of the 13 (23%) patients had positive viral cultures: one patient with lymphoma (on day 16) and two immunocompetent patients (on day 7 and day 11). Eighty percent of the patients had negative viral cultures and had a mean Ct value of 20.5. None of the solid organ transplant recipients had positive viral cultures. CONCLUSIONS: The mean Ct value for negative viral cultures was 20.5 in this case series of immunocompromised patients. Unlike those with hematological malignancies, none of the solid organ transplant patients had positive viral cultures. Adopting the test-based approach for all immunocompromised patients may lead to prolonged quarantine. Large-scale studies in disease-specific populations are needed to determine whether a test-based approach versus a symptom-based approach or a combination is applicable for the de-isolation of various immunocompromised patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunocompromised Host , Quarantine , Virus Shedding
20.
Vox Sang ; 116(6): 673-681, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1319364

ABSTRACT

BACKGROUND AND OBJECTIVES: During the ongoing pandemic of COVID-19, SARS-CoV-2 RNA was detected in plasma and platelet products from asymptomatic blood donors, raising concerns about potential risk of transfusion transmission, also in the context of the current therapeutic approach utilizing plasma from convalescent donors. The objective of this study was to assess the efficacy of amotosalen/UVA light treatment to inactivate SARS-CoV-2 in human plasma to reduce the risk of potential transmission through blood transfusion. METHODS: Pools of three whole-blood-derived human plasma units (630-650 ml) were inoculated with a clinical SARS-CoV-2 isolate. Spiked units were treated with amotosalen/UVA light (INTERCEPT Blood System™) to inactivate SARS-CoV-2. Infectious titres and genomic viral load were assessed by plaque assay and real-time quantitative PCR. Inactivated samples were subject to three successive passages on permissive tissue culture to exclude the presence of replication-competent viral particles. RESULTS: Inactivation of infectious viral particles in spiked plasma units below the limit of detection was achieved by amotosalen/UVA light treatment with a mean log reduction of >3·32 ± 0·2. Passaging of inactivated samples on permissive tissue showed no viral replication even after 9 days of incubation and three passages, confirming complete inactivation. The treatment also inhibited NAT detection by nucleic acid modification with a mean log reduction of 2·92 ± 0·87 PFU genomic equivalents. CONCLUSION: Amotosalen/UVA light treatment of SARS-CoV-2 spiked human plasma units efficiently and completely inactivated >3·32 ± 0·2 log of SARS-CoV-2 infectivity, showing that such treatment could minimize the risk of transfusion-related SARS-CoV-2 transmission.


Subject(s)
Furocoumarins/pharmacology , Plasma/virology , SARS-CoV-2/drug effects , SARS-CoV-2/radiation effects , Ultraviolet Therapy , Virus Inactivation , COVID-19/prevention & control , COVID-19/transmission , Humans , Transfusion Reaction/prevention & control , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL